

Humanoid controller for walking and jumping motions based on mc_rtc framework

Masaki Murooka CNRS-AIST JRL, IRL

November 28th, 2022

Contents

- 1. HVAC 2021 Results
- 2. Walking and Jumping Control Methods
- 3. Control Framework mc_rtc
- 4. Open-source Walking Controller Baseline WalkingController

HVAC 2021 Results

HRP-5P is walking on uneven ground, stairs, and jumping over gaps

Walking Control Method

Integration of existing typical components

Preview Control

• Preview control provides closed-form solutions to the following problem [Kajita, ICRA'03]

$$\min_{COM} \sum_{0}^{\infty} \|ZMP - ZMP^{ref}\|^{2} + \|\ddot{COM}\|^{2} \text{ s.t. } LIPM dynamics$$

- ZMP^{ref} is determined from a predefined footstep sequence
- Integrating the optimal \ddot{COM} yields the COM^{plan} and ZMP^{plan}

DCM-based feedback

- Modify ZMP to reduce errors due to disturbances $ZMP^{target} = ZMP^{plan} + K(DCM^{actual} - DCM^{plan})$ where $DCM = CoM + \dot{CoM}/\omega$
- The optimal ratio of *CoM* and *CoM* feedback gains leads to *DCM* [Sugihara, ICRA'09]
- Convert target ZMP to total wrench

Force^{total} =
$$m \omega^2 (CoM - ZMP^{target})$$

Wrench Distribution to Feet

- Distribute total wrench to each foot under friction constraints
- Formulated as a quadratic programming problem

Foot Admittance Control

• Modify the foot pose to track target foot wrench

 $Pose^{target} \leftarrow Pose^{target} + \Delta Pose$ where $\Delta Pose = D (Wrench^{actual} - Wrench^{target})$

Inverse Kinematics

- Calculate joint positions that satisfy target CoM and foot poses
- Formulated as a quadratic programming problem

$$\theta \leftarrow \theta + \Delta \theta^*$$
 where $\Delta \theta^* = \underset{\Delta \theta}{\operatorname{argmin}} \sum_{task} \left\| J_{task} \Delta \theta - \left(v_{task}^{target} - v_{task}^{current} \right) \right\|^2$

Jumping Control Method

- The only difference from the walking control is the CoM planning
- Apply linear MPC based on centroidal dynamics

Centroidal Linear MPC

- Since centroidal dynamics is nonlinear, linear MPC cannot be applied as is
- Plan CoM vertical motion only (linear dynamics) with MPC
- Plan full centroidal motion (linear dynamics with known vertical motion) with MPC [Nagasaka, RoboSym'12 (in Japanese), Audren, IROS'14]
- Linear MPC is formulated as quadratic programming problem

Centroidal Linear MPC

- Landing 1.4m forward with a jump of 0.25 s floating phase
- Allow up to 4 times the limits for velocity and torque at knee and hip pitch joints

Control Framework mc_rtc

https://jrl-umi3218.github.io/mc_rtc/

- CNRS-AIST JRL develops mc_rtc
 - Kinematics and dynamics algorithms
 - Robot modeling
 - Logging and utility functions
 - Documentation
 - CI environments

Tutorial at Humanoids 2022 mc_rtc: An Application Framework for Robotics November 28th, 2022. Room B3

_		intpo.//j							
Robots - mc_rtc	×	+			~	-		×	
\leftrightarrow \rightarrow C $$ jrl	-umi3218.githu	ub.io/mc_rtc/robots.html			QĽ	2 1		:	
mc_rtc Interfa	aces Robots	Tutorials API documentation	JSON/YAML o	documentation Online demonstr	ation	EN	JP 🤇	כ	
	Robo	ots							
	This page lis the relevant some cases	ts the robots that are currently ava repository for the robot descriptic you may need to request access to	ailable to be u on package an o it.	ised in mc_rtc as well as a link to id the robot module package. In					
		HRP-2-Kai		HRP-4-LIRMM					
		Description	0	Description					
		₩ hrp2_drc		₩ hrp4					
		mc-hrp2		mc-hrp4					
		HRP-4J		HRP-4CR					
		Description		Description					
		Module		W nrp4cr_description					
		⊕ mc_hrp4j		mc_hrp4cr					
		HRP-5P		Nao					
		Description		Description					
		Module		Module					
		The mc_hrp5_p		⊕ mc_nao					
		Pepper	34	Panda					
	pepper	Description	ALT IN	Module mc panda					
		- pepper_description		🛥 mc_panua					

Module

Open-source Walking Controller BaselineWalkingController

- ✓ Tested on real robots
- ✓ Dynamics simulation tests is run on CI environments
- ✓ Docker image is released with the latest version of the controller
- ✓ Easy to switch between various methods for CoM planning
- ✓ Easy to switch between "closed-loop MPC" and "open-loop MPC + stabilizer"

□ isri-aist / BaselineWalkingController Public

https://github.com/isri-aist/BaselineWalkingController

Real Robot Testing of BaselineWalkingController

HRP-5P (Test on Nov.11th)

HRP-2KAI (Test on Nov. 7th)

Simulation Tests on CI environments

• Choreonoid tests are performed with every update on CI (GitHub Actions)

Automatic Release of Docker Images

• Docker images are released on CI for every update

Search or jump to	/ Pull request	s Issues Codespa	aces Marke	tplace Explore		Ģ +• 🍥•					
📮 isri-aist / BaselineWalki	ngController Public	☆ E	idit Pins 👻	⊙ Unwatch 4	ד V Fork 1 ד	★ Starred 7 ×					
<> Code 💿 Issues 💲 Pull requests 🔟 📀 Actions 🖽 Projects 🖽 Wiki 😳 Security 🗠 Insights 🐯 Settings											
ਿੰ° master → ਿੱ 3 branches	♡ 0 tags	Go to file	Add file 🔻	<> Code -	About	礅					
Humanoid walking controller with water a commit walking controller with baseline methods											
.clang-format-common.sh	No releases por										
.clang-format-fix.sh	t. 4 months ago										
🗋 .gitignore Generate mc_rtc.yaml		4 months ago		Packages 3							
CMakeLists.txt	ckages in cmake.		3 months ago	G baseline_walking_controller_ci							
LICENSE Create LICENSE				4 months ago	baseline_walking_controller						
README.md	baseline_walking_controller_hvac2022										

\$ docker pull ghcr.io/isri-aist/baseline_walking_controller:latest \$ docker run --gpus all --rm -it --env="DISPLAY" -volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" ghcr.io/isri-aist/baseline_walking_controller:latest ./walk_on_stairs.bash

Easy switching of CoM planning methods

• You can try the various CoM trajectory generation methods implemented in CentroidalControlCollection

isri-aist/CentroidalControlCollection

isri-aist/BaselineWalkingController

List of methods

- PreviewControlZmp [Kajita, ICRA'03]
- DdpZmp [Feng, Journal of field robotics '15]
- DcmTracking [Englsberger, IROS'13]
- FootGuidedControl [Sugihara, IROS'17, Kojio, IROS'19]
- LinearMpcZmp [Wieber, Humanoids'06]
- IntrinsicallyStableMpc [Scianca, Humanoids'16]
- SingularPreviewControlZmp [Urata, Humanoids'11]

Easy switching of open/closed-loop MPC

- Open-loop MPC is often used implicitly in bipedal walking
- Differences between the two MPC schemes have not been fully discussed

Concluding remarks

- For beginners (and experts, of course), it is very helpful to be able to refer to a set of formulas in a paper and source code
- Let's share them in open discussion forums such as Humanoid Virtual Athletics Challenge